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1. INTRODUCTION

Majority vote is a decoding scheme used to enchance signal transmission
in information theory. Binary signals are sent over a channel (called a
binary symmetric channel) in which each signal 1is correctly received with

probability p. To increase the probability of correct reception, each bit

is fepeated 2k-1 times, and the bit i3 decoded as the majority vote, i.e.
the signal (zero or one) which is received at least k times.

If p > 1/2, the majority vote scheme can produce transmission accuracy

which is arbitrarily good by choosing k to be large enough. Define the

ﬁ! probability that the majority vote is correct as
> 2k-1
2k-1 2k=1~
= = (551 pla-p®Ti. (1.1)
J=k

Then P, * 1l as k » », and as long as p > 1/2 and k > 1, P, > p. See McEliece
(1977), p. 3 for proofs and further discussion.
Puthoff (1984) recently conducted an experiment in which the majority

. vote technique was used to try to enchance signal transmission via ESP.
Theoretically, the idea of the experiment was that for each of n repetitions,
a percipient (the term parapsychologists prefer instead of “subject®) would
make five independent guesses as to the red/black outcome of a single spin
of a roulette wheel. The response chosen at least three times would be
recorded as the percipieﬁt‘s guess for that repetition, thus the guess
would be the majority vote of five trials.

The actual experiment was slightly more complicated, for two reasons.

ca

First, 1if percipients were asked to guess the same target five times, they

would probably repeat the same answer five times, and the concept of five

independent repetitions would be completely negated. Second, the majority
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vote decision could be reached in as few as three trials, so the extra
guesgses would be extraneous.

The actual experiment proceeded as follows. The experimenter spun the
roulette wheel, immediately closing the drawer in which it was kept before
it stopped spinning, so that he did not know the outcome. Thus, the
experiment was designed to detect clairvoyance, extrasensory knowledge of
objective events, and not telepathy. The percipient was given an HP-41C
calculator which was programmed in advance to randomly aséign éhe
designations "red™ and "black"™ to two preselected keys. The random
assignment was made for each individual trial. Thus, the percipient's job
was to push whichever of the two keys "felt right"™ for each trial. The
calculator kept an internal tally of the number of times "red” and "black”

had been guessed, and terminated the sequence when three of one or the other

had been accumulated. The percipient then handed the calcﬁlator to the

S experimenter, who opened the drawer, compared the calculator result with

-

ii the correct color, and told the percipient whether or not the majority vote
had been successful. We will return to this example momentarily.

In general, consider an experiment which consists of n repetitions of a

randomly stopped Bernoulli sequence, where each sequence is stopped at the

kth guccess or kth failure, whichever comes first. Another example of such
an experiment might be one {n which n poll takers each sample individuals
until they get either k affirmative responses or k negative responses to
some question.

The main goal in such experiments would usually be to make inferences
about p, the per trial probability of success. However, there may be
instances where the goal is to make inferences about Py the probability of

correct majority vote. Notice that Pa is also the probability that an
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individual sequence ends with a "sﬁccess”, since each sequence is terminated at
the kth success or kfh fatlure, whichever comes first.

In the ESP experiment, the second goal was of interest because the whole
idea of the experiment was to try to increase the overall probability of
correct reception through repetition. One way to approach this goal might be
to estimate p, and then use (1.1) to estimate L However, with the
experimental setup used, if paranormal abilities do exist they may operate
on the sequence as a whole, and the trials may not be independent so that
inferences about Py would be made without the independence assumption.

The remainder of the paper is divided into four sections. 1In Section 2,
the experiment 1is modeled in two different ways. 1In Sect;on 3 we determine
the maximum likelihood estimator for p and study its properties. Other

estimators of p and p, are derived in Section 4, and the ESP experiment is

analyzed in Section 5.
2. APPROACHES TO THE PROBLEM

The experiment described above can be modeled in various ways. We
consider it first as a sequence of Bernoulli trials, and then as a multinomial
experiment. Although the models are theoretically the same, they are
conceptually and notationally different, and it is interesting and
mathematically convenient to consider both.

Let (Yy, T4) be the number of successes and the number of trials,
respectively, needed to achieve either k successes or k failures for sequence
i, 1=1,...,n. Let (Y,T) be the generic random vector representing the i.{.d.

n

n
random vectors (Y4, Ty). Further, let ™.z Yy and ™= ¢ T{ be the
i=1 i=1

total number of successes and trials, respectively, for the entire experiment.

mm
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Define Z171,.¢¢.,2 3 cee 3 Znlyeees as the actual randomly stopped
1T Ty,

Bernoulli sequences; th:n it is immediately obviougithat T1se+.,Tp and ™ all
fit th: deginition of stopping times. Also Yy = jfl zij- i=1,.+.,n, and
Y= z z Zij are all randomly stopped sums. We use these facts in
Sectit:13?-1

We can also model the experiment as multinomial, with each of the n

sequences falling into one of 2k possible categories. The category is
determined by the length of the sequence (k,k+l,...,2k-1), and whether it ended
in success or failure. Let X = (X;,X9,e.:.,X9)"' be the 2kxl vector of
multinomial counts, where X24-1 = number of sequences with exactly k failures
and (j~1) successes and ij = nuﬁbet of sequences with exactly k successes and
(j=1) failures, j=1,...,k. For example, X1 and X, represent the numbers of
sequences composed of all failures and all successes, respectively.

k
Note that I (X24-1 + X24) = n.
i=1

Define the corresponding vector of wmultinomial probabilities as %, using
the same subscripts. Thus, we obtain the cell probabilities:

an-l = P(k failures, j-1 successes, ending with failure)
(kjtlj-z) Pj-l qk;

n2j = P(k successes, j-1 failures, ending with success) @-1)
(41 ot ot

j=1l,...,k, where q = 1 - p.
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We can rélate the two models by noting that

k
Y = jZl[(j-l) ij-l + szj]
and (7.2)
k
™ = jzl(k + 3-1) (X24-1 + X24).

In the next few sections we will utilize both models as necessary.
3. MAXIMUM LIKELTHOOD ESTIMATOR

Since maximum likelihood estimators based on data sampled with random

stopping rules are identical to those for fixed sampling, it follows from the
Bernoulli model that the MLE of p is

p = Y'/T". (3.1)
From (2.2) we obtain the relationship:

k k
P=gX) = I [(J1)Xz3-1 + KXp4]/ I [(k+3=1)(Xz4-1 + X24)]. (3.2)
=1 3=1

3.1 Preliminary Results

We state, as lemmas, some well known results which will be used

to prove the asymptotic normality of 5.

Lemma 3.1: If X has a multinomial distribution with n trials and probability .

1/2

- D
vector m, then n X ==> MVN (n, L) vhere I = {044} is a singular matrix

with Oyy ™ ni(l-ai) if 1=3 and Ogy = = My® 1f 14,

3 b 17
Proof: This follows from the multivariate Lindeberg—Lévy Central Limit

Theorem. See e.g., Serfling (1980, p. 108).
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Lemma 3.2 (Delta method): Let Q, be an S~dimensional random vector such

that /ir'gn --> MVN(Q,Z). Let £f(Qn) be a function from St 1,

differentiable at Q = Q; define d = [2E- Then /@ (£(Qy) ~ £(Q))

2 1272
--> N(0, d' £ 4).
Proof: See e.g., Bishop, Fienberg and Holland (1975, p. 493).

Lemma 3.3 (Wald's equqtion): If Z4, 1>1, are i.i.d. random variables with

T
E|Z| < », and T is a stopping time for Z;, Z3,..., then E( L zg) = F(T) E(2).
i=]

Proof: See e.g., Ross (1983, Corollary 7.2.3)

Lemma 3.4: Let Wy, i>1, be 1.i1.d. random variables with E(W) = 0 and
E(W2) = 02 ¢ @. If T is a stopping variable and St is the corresponding

randomly stopped sum, then E(S:) = g2E(T).
Proof: See Chow, Robbins and Teicher (1965, Theorem 2).

3.1 The Asymptotic Distribution of the MLE

We are now ready to prove:

Theorem 3.1: For the experiment described above, B = Y*/T* 1s asymptotically

N(p, PQ/E(T)), i.e., /& (p-p) ==> N(0,pq/ET).

"

Proof: Let i_- n-lz, 80 (3.2) can be represented as p = g(X) = f(i). Combine

Lemma 3.1 and Lemma 3.2, with Oy = %, £(3n) = £(%) = p, Q = x, L given by

of(x)
« This results in:

Lemna 3.1 and the ny in formula (2.1), and 4 = [——| ;- n]
auj - -
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p is asymptotically N(f(x), n ld' I d). (3.3)
k k
Next note that f(x) = & [(j—l)nzj_1 + anJ]/[ z (k+j-1) (“Zj-l + nzj)]

j=1 =1
= E(Y)/E(T). Apply Lemma 3.3 with Z; ~ Bernoulli (p), and T the stopping

time for an individual sequence, to get E(Y) = pE(T), and thus f(n) = p.

To determine the asymptotic variance in (3.3), note that I = [diag. T -
nn'], where diag. n is a 2k x 2k matrix with the elements of n on the diagonal
and 0 elgsewhere. Also, using the notation de-l and dzj to correspond to the

elements of d, we find

dy4-1 = ((3-1) = p(k+3~1)]/E(T)

(3.4)
d2j = [k=p(k+3-1)]/E(T).
Thus, d' I 4 = d'(dtag ®) d - (4'D)°
ko2 K 2
- jfl(dzj_lnzj_l + dzjnzj) - (jfl(dzj_lnzj_l + dzjnzj)) (3.5)

But notice from (3.4) that for each of the 2k multinomial outcomes, the
numerator of the corresponding element of d is simply [# successes =

p(# guesses)]. Thus, (3.5) can be rewritten as

2 (3.6)

[E(r-pT)? = [(ECY-pT)12)/IE(T)]? = E(Y-pT)?/[E(T)]
since E(Y) = pE(T).

We now invoke Lemma 3.4. Let

q if trial { 1s a success

-p 1f trial { 1{s a failure

................
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Then E(W) = pq = pq = 0, E(W') = pqg + pq =pg, and St = I Wy = q¥ - p(T-Y)
i=1
= Y-pT. Thus, from Lemma 3.4,
B(s2) = B(v-pm)? = EWIE(T) = paB(T). (3.7)

Combining (3.5), (3.6), and (3.7), d' £ d = pq/E(T). Since R(T*) = nR(T), we

have from (3.3), B is asymptotically N(p, pq/E(T*)).

3.3 Computational Formulas for E(T)

To use Theorem 3.1 for inference, we require an expression for E(T*) for
fixed p and k. Although the definitional formula given by (3.11) below 1s
computable, it is interesting to note that it can be rewritten in the
computational form (3.9), via the recursion in (3.3). In particular, the
closed form expression (3.10) can be used when p = .5, as in the ESP example.
To show the dependence on k, we write ET as E(Ty). The redundancy of this
notation with E(Ty) used earlier should not cause confusion, sircé the

distinct roles of the subscripts i and k remain fixed througheout the paper.

Theorem 3.2:

2 3.8
B(T,,) = Gtk E(T) + (2%) (pd® G5
and
k-1
E(T,) = k jEO s} (%y) 7. (3.9)
When p = .5, E(T,) = 2k[1-(ik)/4k]. (3.10)
k
Proof: E(T, ) = I (k+3~1) (n,, ., + m,.)
Proof. N 2§~1 ¥ M2
(3.11)
k=~1 def
-k I (k+j) (pda® + p%qd) "= Kks(w).
3=0
T e e e S e e T i T e e e e e
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Now we will show that
() *[s(k+1) = s()] = (r) ™t (%K), (3.12)

Using the facts that (k+§+1) = (k;j) + (?ti) and (pj-kq + qu-k) - (pj-k + qj-k)

- (pj-k+1 + qj-k+1), write (pq).k S(k+1) in three pieces:

x
(pq) ¥ s(i#1) = £ (k+§+1J (p37%q +.qu'k)

i=0
g K _ _
k. s (§+J) (p37% + ¢37K) (3.13)
j=0
» k _ -
- + 3 (3 7+ 1Y) . (3.14)
) 1
» T (k+§+1) (pj k+1 + qj k+1) (3.15)
= 3=0
% - 2k
!i Note that (3.13) is simply (pa)  S(k) + 2(,").
. Also, by rewriting (3.15) so that the summation is from j=1 to j=k+l,

(3.14) and (3.15) combine to give - (")), Hence, (p)™* (S(k+1)-

S(k)) = 2(ik) - (2t+1) - (+1)"1 (:F), thus verifying (3.12).

From (3.12), we have E(T, ) = (k+1)S(kH1) = (I+1)S(k) + (Ek) (¥ =

&

GRTECT) + (24)(pa)®, thus vertfying (3.8).

Now use induction to show (3.9). Since, E(Tl) = 1, (3.9) holds for k=l.

Suppose E(Tk) can be written as in (3.9). Then from (3.8), E(Tk+1) = (k+1)l<-1

2k k
E(T) + (k J(pq) ~, which 1s precisely (3.9) for E(T,,,)-

- \_1.w‘-.—— T'.T“:T'T.V'W""":'f'r": 3 Y
Ve e B A R DRI c
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For the special case p = .5 invoke the combinational identities

272 (1) = reg v S (3.16)

see Abramowitz and Stegun (1964, p. 258, 6.1.49); and

N
£ I(g+m)/T(a+m) = (B-a+1)"} [5§§:f;;) - £§§31) I; (3.17)

m=0
see Mangulis (1965, p. 60, 24). Start with (3.9) for p = .5, apply (3.16), then

use (3.17) with § = .5 and ¢ = 2, and finally use (3.16) again, resulting in the

formula (3.10). //

If tables of the incomplete beta function are available, we can use those
to compute ET. Note that

k=1
S(k) = (§+J) (pq" + p5¢9)
=0

But I (ksj) pdd ! = 15(r, ). Thus, S(K) = 2 = 7 Ip(k, k1) - p Iq(k,kH1)
J=r
and E(T,) = ks(k).

It is interesting to note that S(k) is a partial sum of the Catalan number

generating function, C(x) = (1 - /1-4x)/2x = % (j+1)-1(§j) xj; see Riordan (1968).
j=0

Also note that for large k, (3.10) can be approximated by

= B(T) = 2k = 2(k/m/2, (3.18)

o

s using Stirling's approximation.

b

:

- 3.4 Bias of the MLE

%u Unlike in the corresponding fixed sample size problem, the MLF ﬁ is biased.
;,_ The general form of bilas is Cov(T*, 5)/ET*, since Cov(T*, p) = Cov(T*,Y*IT*)

’.
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= EY* - ET*EB = pET* - ET*Eﬁ = (ET*)(bias). To give some notion of the
complexity of this formula, note that when n=1 we find

bias = pq(q-p)/3 for k=2

bias = pq(12pq+5)(q-p)/20 for k=3,
In general, biag < 0 when p > .5, bias > 0 when p € .5. When p = .5, bias = (.,
This 1is clear since E(p+q) = E[(Y*/T*) + (T*-¥*)/T*] = 1, but when p = .5

Ef)'E?{,SOEB’-S-p.'

4. OTHER ESTIMATORS

One way to find an unbiased estimator is to find one for each sequence,
then average over the n sequences. Note that (Yy, Ty) 1s a minimal sufficient
statistic for p, for sequence i. Also, E(Z41) = p. Thus, an unbiased estimator

for p based on one sequence is

(
PS k-l
Pgy = E(2y 1Yy, 1)) = T, 1Y =k
. { Yi
o1 1f Y, < ke
\

An unbiased estimator of p is thus

n
z

p.=% I p
u n =1 3 8

Not}ce that Bu is based only on what Kremers (1985) calls the "preterminal”
data, i.e., the trials before the stopping trial. In particular, 531
= (L preterminal zij)/# preterminal trials.
An obvious analog of 681 based on all of the preterminal trials is SPT -
. (Y*-ns)/(T*-n) = (# preterminal successes)/# preterminal trials, where ng =
number of sequences ending in success. But notice that BpT i3 not even

asymptotically unbiased. Rewriting it as

LT
- V.. RCAN
LT W AL R
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n
by
R i=1
Pm™ 1
pT
z (k+3-2)(X,. , +X,.)
=1 23-1 23

and applying Lemmas 3.1 and 3.2, we find E(;pT) -> E(Y*-ns)/E(T*-n). But
E(Y*—ns) - n(pET-pm) and E(T*-n) = n(ET-1), where P is given by (1.1). Thus,

asymptotically, E(EPT) < p 1ff pm/p >1, t.e., 1ff p > %5 and

E(p,g) > P L££ p <

Finally, consider estimating Py In particular, suppose that we are not
willing to assume that trials are independent Bernoulli, but rather that
sequences are independent and fall into one of the 2k multinomial outcomes. As
nentioned in the introduction, this may be a more reasonable assumption in the
ESP experiment, since paranormal abilities, if they exist, may operate on the
entire sequence as a whole.

With this assumption, inferences about p, are now simply inferences about .
the binomial probability that the majority vote result {s a success. Thus, the

k

Z X

5 23 and its variance is pm(l-pm)/n-

best estimator for pm is simply Bm "

5. ESP EXPERIMENT

The experiment described in the introduction was carried out with k = 3 and
n = 100, for three percipients. Results are shown in Table 1. We would like to
test the hypothesis that p = .5. From (3.10), ET* = 412.5. Also, Var(Bu) = ,027,
derived by writing out its distribution for p = .5, k = 3, n = 100. Table 1 also
gives values of the test statistic Z based on the three estimators B, Bu, Bm'

Notice that in each case B“ < S, which would be expected to be the trend

if p> %5 since p is biased.
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It is also interesting to see if the independence assumption is reasonable
for the data. Table 2 presents the results for two sets of chi-square tests. For
the first set, H,:Guesses are independent, p = .5 was tested, and for the second
set 3 was used in place of .5, so that just the independence hypothesis was being
tested. Notice that the results indicate that the independence assumption seems
reasonable for all three percipients, but the assumption that p = .5 {is
questionable for two of them. The Z tests also support this conclusion.

One curious result is that percipient #2 had about the expected number of

sequences of length 5, but the split between ending in success and ending in

failure was 27 to 12 instead of about half of each. This led to Z = 2.00 for the
test of P, = +5, whereas both tests of p = .5 resulted in nonsignificance. The

parapsychologists used this as evidence that a test based on Py would be more
powerful than one based on p. This 1s clearly not true if the independence

assumption is valid, since the test based on Pa results in loss of information.

Acknowledgements. The author would like to thank Persi Diaconis, Wesley Johnson,

Ingram Olkin, and David Siegmund for helpful discussions.
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_ Table 1: Results for ESP Experiment
::f Outcome Percipient
i S F 1 2 3
o 3 4 12 9
3 0 15 11 17
1 3 13 16 22
3 1 32 22 26
2 3 12 12 9
) 3 2 24 27 17
™, 250,417 219,416 220,400
P2 .600,4.06 +526,1.06 +550,2.03
P 2 .587,3.21 +505, .185 .547,1.73
u
g P2 .710,4.20 .600,2.00 +600,2.00
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Table 2: Chi-square Tests of Independence Assumption

a. Hp:Trials are independent, p = .5

Outcome Pl P2 P3

s F EXp. Obs. X2 Obs. x2 Obs. x2

0 3 12.5 4 5.78 12 .02 9 .98

3 0 12.5 15 .5 11 .18 17 1.62

1 3 18.8 13 1.79 16 42 22 .55

3 1 18.8 32 9.27 22 .55 26 2.76

2 3 18.8 12 2.46 12 2.46 9 5.11

3 2 18.8 24 1.4 27 _3.58_ 17 _ 17

21.24 7.21 11.19

d.f. = 5 p < .005 p> .10 . p= .05

b. Hp:Trials are independent

Outcome Pl P2 ' P3

s F_ Exp. Obs. x? EXp. Obs. x?2 Exp. Obs. %2

0 3 6.4 4 .9 10.6 12 .18 9.1 9 .00

3 0 21.6 15 2.02 14.6 11 .R9 16.6 17 .01

1 3 1.5 13 .20 16.8 16 .04 15.0 22 3.27

3 1 25.9 32 1.44 20.7 22 .08 22.5 26 .54

2 3 13.8 12 .23 17.7 12 1.84 16.5 9 3.41

3 2 20.7 2 .53 19.6 27 2.79 20.2 17 51

5.32 5.82 7.74
d.f. = 4 pE .25 pz .20 P2 .10
e I L g e e DR T L i
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